Geotechnical Engineering is the application of Civil Engineering technology to some aspect of the earth, usually the soil and rock found on or near the surface. Infrastructure and natural geologic landforms and hazards designed and/or analyzed by Geotechnical Engineers include foundations for many types of structures (for example, buildings, bridges, dams, and roadways), natural and human-made slopes, retaining walls, tunnels, earthen dams and levees, highway embankments, earthquakes, liquefaction and lateral spread, ground contamination, ground improvement and stabilization, lightweight embankment materials, and re-use of construction and other waste materials. Sub-disciplines and related disciplines include Soil Mechanics, Rock Mechanics, Foundation Engineering, Geotechnical Earthquake Engineering, Geoenvironmental Engineering, and Geological Engineering.
Structural engineering involves learning the theory of structures such as buildings and bridges, and includes computer-aided engineering and structural dynamics, and earthquake and wind engineering analysis and design. Structural engineers carry out performance-based design and study the behavior of structures built using reinforced and prestressed concrete, structural steel, timber, or composites. Moreover, structural engineers are involved in mitigating the impact of natural hazards and extreme weather using advanced structural sensing, hybrid simulation and reliability, to improve infrastructure resilience.