The Department of Chemical and Biomedical Engineering has made a long-term commitment to emphasize a biological component in its curriculum. The increasing importance of biological and medical subjects within the field of engineering cannot be underestimated. Many of the remarkable breakthroughs in medical science can be directly attributed to advances in chemicals, materials, and devices spearheaded by biochemical and biomedical engineers. Currently, biomedical engineering represents the fastest growing engineering discipline in the U.S., and it is likely to continue as such. The biomedical/biotechnology industries are also the fastest growing of all current industries that employ engineers. Training in biological and biomedical engineering provides an excellent background for graduate and/or medical school, especially in light of the increasing technological complexity of medical education.The Department currently offers the Bachelor of Science (BS) degree in Chemical Engineering with three major options (Chemical Engineering, Biomedical Engineering, and Chemical-Materials Engineering). The BS degree takes between four and five years to complete. The undergraduate curriculum emphasizes the application of experimental and computer analysis to classical chemical engineering principles. This includes laboratory instruction in modern, state-of-the-art facilities in the transport phenomena, unit operations, and process control laboratories. Students are instructed in and utilize state-of-the-art computational programs such as MATLAB, Simulink, Aspen, and COMSOL Multiphysics.
The vision of the Department of Chemical and Biomedical Engineering as an educational unit is to be recognized as a place of excellence in fundamental and applied chemical and biomedical engineering education and life-long learning, and to maintain a national research leadership in modern areas of engineering challenge. To attain this vision, the department realizes that it has to continually satisfy its major stakeholders: students, industrial employers, alumni, departmental faculty, the college, the universities, the community, the Accreditation Board for Engineering and Technology, Inc. (ABET), and other professional societies. Chemical engineering encompasses the development, application, and operation of processes in which chemical, biological, and/or physical changes of material are involved. The work of the chemical engineer is to analyze, develop, design, control, construct, and/or supervise chemical processes in research and development, pilot-scale operations, and industrial protection. Chemical engineers are employed in the manufacture of inorganic chemicals (e.g., acids, alkalis, pigments, fertilizers), organic chemicals (e.g., petrochemicals, polymers, fuels, propellants, pharmaceuticals, specialty chemicals), biological products (e.g., enzymes, vaccines, biochemicals, biofuels), and materials (e.g., ceramics, polymeric materials, paper, biomaterials). The graduate in chemical engineering is particularly versatile. Industrial work may involve production, operation, research, and development. Graduate education in medicine, dentistry, and law, as well as chemical engineering, biomedical engineering, and other engineering and scientific disciplines are viable alternatives for the more accomplished graduate. Chemical-Materials Engineering. Chemical engineers have extensively developed and studied the molecular structures and dynamics of materialsincluding solids, liquids, and gasesin order to develop macroscopic descriptions of the behavior of such materials. In turn, these macroscopic descriptions have allowed the construction and analysis of unit processes that facilitate desired chemical and physical changes. This constant interplay between molecular scale understanding and macroscopic descriptions is unique and central to the field of chemical engineering.
کمک هزینه تحصیلی
دوره های کارآموزی
هزینه دوره ها یک شاخص است و باید به عنوان راهنما مورد استفاده قرار گیرد گرفتن اطلاعات دقیق عزینه
An applicant who desires admission as a first year in college student must be graduated from a regionally accredited high school (or comparable international institution). All transcripts/academic records that are not in English must be accompanied by certified English translations. If the transcript/academic record does not indicate the degree earned and date the degree was awarded, separate proof of degree is required. We require freshman applicants to submit at least one ACT and/or SAT test score to be considered for admission. Florida State does not require the optional ACT writing score or the optional SAT essay. We encourage applicants to take both the ACT and SAT, and to attempt each exam more than one time to earn the highest possible score. Internet based TOEFL (IBTOEFL): 80 Paper based TOEFL (TOEFL): 550 International English Language Testing System (Academic IELTS): 6.5
تاریخ ددلاین مشخص نیست با یک مشاور IDP صحبت کنید برای اطلاعات بیشتر
Further information
If you aren't eligible for the above entry requirements, you might ant to explore pathway options at Florida State University. If you want to find out more, speak to our counsellors.