A chemical engineering BS prepares you to advance nano-scale composites, semiconductors, pharmaceuticals, plastics, fibers, metals, and ceramics and develop alternative energy systems, biomedical materials and therapies, and more. RIT's degree in chemical engineering is a comprehensive program of study that prepares you to advance nano-scale composites, semiconductors, pharmaceuticals, plastics, fibers, metals, and ceramics and to develop alternative energy systems, biomedical materials and therapies, and strategies that minimize the environmental impact of technological advancements.
Chemical engineering applies the core scientific disciplines of chemistry, physics, biology, and mathematics to transform raw materials or chemicals into more useful or valuable forms, invariably in processes that involve chemical change. All engineers employ mathematics, physics, and engineering to overcome technical problems in a safe and economical fashion. A chemical engineer provides the critical level of expertise needed to solve problems in which chemical specificity and change have particular relevance. They not only create new, more effective ways to manufacture chemicals, they also work collaboratively with chemists to pioneer the development of high-tech materials for specialized applications. Well-known contributions include the development and commercialization of synthetic rubber, synthetic fiber, pharmaceuticals, and plastics. Chemical engineers contribute significantly to advances in the food industry, alternative energy systems, semiconductor manufacturing, and environmental modeling and remediation. A special focus on process engineering cultivates a systems perspective that makes chemical engineers extremely versatile and capable of handling a wide spectrum of technical problems. Students develop a firm and practical grasp of engineering principles and the underlying science associated with traditional and emerging chemical engineering applications.