The doctoral (Ph.D.) degree prepares students to solve complex, long-term research problems. You can expect to graduate in four to five years and to work on a large research project, culminating in a dissertation. The majority of our doctoral graduates end up in industry careers, usually in research and product development positions. Others go on to careers in academia, either as a postdoctoral researcher or an assistant professor. The Chemical Engineering program provides a strong grounding in the fundamentals and explores critical applications in a wide range of process systems. Students gain advanced knowledge of chemical engineering theory and its relationship to related engineering processes, including biochemical, biomolecular, biomedical, biotechnology, catalysis, colloid and surface science, computational modeling, environmental, fluid mechanics and rheology, materials processing, nanotechnology, polymers, thin films, process control, process design, separations, transport phenomena, thermodynamics, and modeling. Students graduate with the qualitative and quantitative skills necessary for professional research and teaching in chemical engineering.
Modern problems in transport phenomena are inherently complex, spanning several size scales and often involving the interplay of the motion of material or energy with multiple dissolved or dispersed components. Our faculty tackle transport problems in the agricultural, biomedical, chemical, food, personal care, petroleum, and energy industries. In view of the growing technological emphasis on small-scale systems, these efforts frequently bring together traditional aspects of transport phenomena with the dynamics of suspended particles, droplets, colloids, vesicles, biological cells, or macromolecules. Our transport faculty participate in graduate groups in applied mathematics, biophysics, food science, and biomedical engineering, and often employ interdisciplinary approaches in their research.