The goal of the undergraduate majors in Physics and Applied Physics is to develop expert problem solvers with a broad understanding of physical principles. The programs are flexible and prepare students for careers in industrial research, applications programming, education, law, or business, as well as for graduate study in astronomy, biomedical physics, engineering, or physics. Students choose a major in either pure Physics or Applied Physics. The major in Physics includes a standard track for graduate study in physics, a Specialization in Astrophysics, and Concentrations in Computational Physics, the Philosophy of Physics, and Physics Education. The major in Applied Physics allows students to combine physics courses with courses from overlapping disciplines, such as materials science, electrical engineering, geosciences, biomedical imaging, or other fields. Annual mandatory meetings with faculty advisors assist students in selecting the right program for their aptitudes and interests.
The Computational Physics concentration provides training for positions in software development in a wide variety of high-technology fields. For example, consider medical imaging software for magnetic resonance imaging. To write a first-rate program, one must understand the apparatus and analysis techniques (physics), use appropriate numerical techniques (numerical analysis), and employ a convenient object-oriented interface (computer science). The concentration develops this unique set of skills: physical and mathematical insight through the Physics curriculum, knowledge of modern computer programming techniques, and knowledge of numerical analysis.