Since biological and medical systems involve complex chemical and physical processes, chemical engineering is a natural professional background for bioengineering applications. Bioengineering is an interdisciplinary field that combines the tools and methods of engineering to address challenges in the health sciences and in basic research. Bioengineers strive to understand biological systems, from molecules to whole organisms, from a quantitative and analytical perspective. Because of this in-depth study, bioengineers are uniquely qualified to work at the interface between living and non-living systems, enhancing our ability to measure, image, repair, or replace physiological substances or processes. Training in bioengineering prepares students for graduate school or industry, and is an excellent preparation for professional programs (medicine, dentistry, nursing, pharmacy). Career opportunities for bioengineers at the undergraduate level include the biosensor, pharmaceutical and medical device industries as well as positions in hospitals, federal labs, and environmental agencies.
A program that prepares individuals to apply mathematical and scientific principles to the design, development and operational evaluation of systems employing chemical processes, such as chemical reactors, kinetic systems, electrochemical systems, energy conservation processes, heat and mass transfer systems, and separation processes, and the applied analysis of chemical problems such as corrosion, particle abrasion, energy loss, pollution, and fluid mechanics.