This versatile degree allows you to develop an individualized program of study in mechanical systems/design, fluid mechanics, solid mechanics, or thermal science. In addition, there are opportunities for interdisciplinary programs such as biomechanics, geomechanics, manufacturing, material science, ocean engineering, and micro/nano sciences.
Studies in solid mechanics involve strength of materials, elasticity, plasticity, continuum mechanics, composite materials, fracture and fatigue, vibrations, wave propagation, computational methods, and micromechanics. Applications of these studies are applied to the mechanical and thermomechanical behavior of metals, composites, functionally graded materials, ceramics, and geological media under both static and dynamic loading conditions. A significant portion of our studies has been involved with micromechanical material behavior. Areas of current research include: behavior of materials under shock loading, dynamic fracture mechanics and material behavior, finite element modeling of biological materials, computational simulation of particulate composites, cellular and granular materials, fatigue crack growth, micromechanical behavior of composites, material erosion from abrasive waterjet processes.