This engineering program is designed to prepare engineering physicists for careers in the fast-paced, evolving world of engineering or in areas that overlap the traditional boundaries between science and engineering disciplines. The physics and mathematics requirements for this program are similar to those of the B.S. in Physics. However, in addition to those requirements, students take an additional 30 credit hours of engineering courses. These courses focus on one area of engineering, known as the engineering physics concentration. The degree's curriculum provides both the scientific foundation as well as the advanced technological knowledge required in engineering. As a result, this program provides the flexibility for students to obtain physics or engineering positions immediately after graduation or pursue graduate studies in physics (e.g. from solid state physics to astrophysics), in an engineering discipline (e.g. electrical, mechanical, or nanoengineering) or in professional programs such as medicine or law.
Learning Outcomes
For a Bachelor of Science in Engineering Physics, students will:
Identify, formulate, and solve complex scientific and engineering problems by applying principles of engineering, science, and mathematics.
Apply engineering design to produce solutions that meet specified needs with consideration of public health, safety, and welfare, as well as global, cultural, social, environmental, and economic factors.
Communicate effectively with a range of audiences both technical and non-technical.
Recognize ethical and professional responsibilities in engineering and scientific situations and make informed judgments, which must consider the impact of engineering and scientific solutions in global, economic, environmental, and societal contexts.