Metallurgical engineering involves the study, innovation, design, implementation, and improvement of processes that transform mineral resources and metals into useful products that improve the quality of our lives. This includes processing materials, like metals and alloys, to extract, refine and recycle metals. Without metallurgical engineering, we would not have the components we need to build buildings, aircraft, trains, ships, or even mountain bikes. Accredited by the Engineering Accreditation Commission of ABET, the Metallurgical Engineering curriculum consists of coursework across the three main areas of metallurgy: mineral processing, chemical metallurgy, and physical metallurgy. Additional classes cover topics like metallurgical thermodynamics, fluid flow, kinetics, and heat and mass transport, as well as the general sciences (chemistry, engineering, physics, and math). Because society is so dependent on metals, metallurgical engineering has become an increasingly important area of study: continued economic and technical progress will depend on further advances in metal and mineral technology. This program additionally offers students the option to complete one of 6 emphases, allowing them to tailor their program to best fit their strengths and interests.