The David R. Cheriton School of Computer Science has an international reputation in teaching, academics, research, and employment. We attract exceptional students from all over the world to study and conduct research with our award-winning faculty. You can participate in research projects in a wide variety of topics with our internationally acclaimed researchers. Our research spans the field of computer science, from core work on systems, theory and programming languages to human-computer interaction, DNA and quantum computing to theoretical and applied machine learning, just to name a few. As a graduate student, you will: Access research-intensive lab spaces. Gain the opportunity to publish your work in top conferences and journals. Present at premier conferences in front of peers, industry leaders, researchers, and experts in your field. As a graduate student, you will have the independence to pursue your preferred area of research with a faculty If you want to continue pursuing research and expand your learning, you will work with a supervisor to develop a thesis. As a graduate student at the PhD level you will be expected to conduct meaningful research that expands the scope of your graduate work.
Quantum information formulates the notion of information in a manner that accounts for the quantum mechanical behaviour of our world. In this framework, models of computation and communication that harness the strange power of quantum mechanics have been proposed and investigated. In particular, quantum computers are computing devices can exist in several states simultaneously and their computation paths can interfere with each other. They can perform some tasks exponentially faster than any classical computer, which are restricted to the laws of classical physics. For example, a quantum computer can factor an n-bit integer in time polynomial in n, whereas all known classical algorithms require exponential time to do this. From this, it follows that a quantum computer can easily break many public-key cryptosystems, such as RSA. There are, however, quantum public-key cryptosystems based on the uncertainty principle, that are provably secure against any classical or quantum attack.