Electrical and computer engineers shape the future through innovation. They develop and improve systems that serve everyday needs of society spanning from high-voltage engineering and sustainable energy, to breakthroughs in wireless technology. Our faculty and students do everything from creating low-cost digital x-ray imagers to combat tuberculosis in developing countries, to building real-time embedded systems to advance the design and reliability of commercial products. The Department of Electrical and Computer Engineering (ECE) is founded on leading engineering education and research, a world-renowned co-operative study program, and a bold history of innovation. Waterloo Engineering is ranked among the top 50 engineering schools in the world, our ECE department is committed to sustaining that excellence in our areas of research while venturing into growing areas of opportunity. We attract the best and brightest students and faculty from around the globe, and our graduates are recruited worldwide by leading engineering firms, corporations, government agencies, and research-intensive universities. A Doctor of Philosophy (PhD) degree is ideal for students pursuing a career in fundamental or applied research in academia, government, or corporate environments.
The biomedical research area covers several sub-areas across the department including nanotechnology, silicon devices and integrated circuits, circuits and systems, computer software, communications and information systems, pattern analysis and machine intelligence, systems and controls, wireless communications, and antennas, microwaves and wave optics. Our research interests are diverse, and currently include: biomedical ultrasound imaging and therapy, medical diagnostic X-ray imagers, medical image processing (denoising, registration, segmentation, restoration, etc.), medical image analysis (object detection and tracking, automatic diagnosis), telemedicine (real-time transmission of image/video), linear stochastic systems, human motion analysis, machine learning, human-robot interaction, MEMS/MOEMS, CMOS integration, Lab-on-chip devices and medical diagnostics, biocompatibility of patterned metals, circuits for implantable neural recording systems, nonlinear systems, optimal lossy and lossless data compression algorithms, bioelectromagnetics, and robotics.